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Appendix 1 A simplified algorithm to implement the recursive structural 
equation model for RFI via Markov chain Monte Carlo simulation 
 
The Bayesian implementation of the recursive model for RFI follows Gianola and Sorensen (2004) 
and Wu et al. (2007, 2008, 2010). A simplified algorithm is described below. The RFI phenotypes 
(i.e., 𝑦!" − ∑ 𝜆"#$

#%& 𝑦!#) are uncorrelated with the phenotypes of energy sinks (Kennedy et al., 
1993). According to the path theory, a zero phenotypic correlation (𝑟') between RFI and an energy 
sink (indexed by j, for 𝑗 = 2,… , 𝑘 ) implies that either 1) (1 − ℎ()*)01 − ℎ+1𝑟,!"#,$ =
−ℎ()*ℎ+𝑟-!"#-$  or 2)  𝑟,!"#,$ = 0  and  𝑟-!"#-$ = 0 , where ℎ  stands for the square root of 
heritability, and 𝑟-!"#-$ and 𝑟,!"#,$ are the genetic and residual correlation, respectively, between 
RFI and energy sink j, assuming a total determination by these two components. We took the latter 
approach by forcing the genetic and residual covariance between RFI and energy sinks to be zeros, 
because we intended to have RFI as a measure of net feed efficiency, independent of energy sinks. 
That is, 
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The conditional posterior distribution of structural coefficients does not depend on any unknown 
parameters of energy sinks, assuming zero genetic and residual correlations between RFI and 
energy sinks. This feature drastically simplifies the posterior inference of structural coefficient 
matrix and unknown parameters for RFI. Denote 𝝀 = (𝜆"&, 𝜆"., ⋯ , 𝜆"$)/ . We assumed a 
multivariate normal prior distribution (MVN) for 𝝀. That is, 𝝀|𝜆0, 𝜏&~𝑀𝑉𝑁(𝟏𝜆0, 𝐈𝜏&), where 𝟏 is 
a (𝑘 − 1) × 1 vector of ones, 𝐈 is a (𝑘 − 1) × (𝑘 − 1) identity matrix, and  𝜆0 and 𝜏& are hyper-
parameters. Then, the conditional posterior distribution of 𝝀  is also a multivariate normal 
distribution (Gianola and Sorensen, 2004; Wu et al., 2007), independent of the equations for 
energy sinks. The conditional posterior means of 𝝀 are: 
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where else represents the data and all other unknown model parameters, and  𝑤!" = 𝑦!" −
(𝜇" + 𝐱′!"𝜷" + 𝒛′!"𝒂") , for 𝑖 = 1,… , 𝑛 . Similarly, the conditional posterior distribution of 
location parameters (i.e., fixed and random effects) and scaling parameters (variance components), 
respectively, for RFI does not involve any unknown parameters for energy sinks either. The 
conditional posterior means of the RFI location parameters are the following: 
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where 𝒚"∗ = Y
𝑦"" − ∑ 𝜆"$𝑦"$$
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], 1 is a 𝑛 × 1 vector of ones, and I is an identity matrix of 

appropriate dimensions. In the above, a flat prior is assumed for the overall mean. Multivariate 
normal prior distributions are assumed for fixed-effect and random-effects: 𝑃𝑟(𝜷") =



𝑀𝑉𝑁(𝜷0, 𝜔&𝐈) and 𝑃𝑟(𝒂") = 𝑀𝑉𝑁0𝟎, 𝐀𝜎-%
& 1, where A is a numeric additive genetic relationship 

matrix, 𝜎-%
&  is the RFI genetic variance, and 𝜷0 and 𝜔& are hyper-parameters. Given inverse Chi-

squared prior distributions to the genetic and residual variances, 𝑃𝑟(𝜎4%
& ) = 𝐼𝑛𝑣 − 𝐶ℎ𝑖(𝑣- , 𝑣-𝑆-&) 

and Pr	(𝜎,%
& ) = 𝐼𝑛𝑣 − 𝐶ℎ𝑖(𝑣, , 𝑣,𝑆,&), their conditional distributions are also inverse Chi-squared 

distributions: 
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Computing sub-models for energy sinks can be implemented through Markov chain Monte Carlo 
sample by iteratively sampling unknown parameters from their conditional posterior distributions, 
or implemented by REML. In the latter case, MCMC simulation was only necessary for sampling 
the structural coefficients and unknown parameter for RFI only. This drastically simplified the 
model computing when dealing with a large dataset. 
Finally, the variance-covariance components for DMI are computed from observing the following 
relationships: 𝐆0∗ = 𝚲2"𝐆0𝚲,2" , 𝐏0∗ = 𝚲2"𝐏0𝚲,2" , and 𝐑0∗ = 𝚲2"𝐑0𝚲,2" , where 𝑮0 =

r𝜎-&
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𝟎 𝐆26
s , 𝐏0 = r𝜎'&

& 𝟎/

𝟎 𝐏26
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& 𝟎/

𝟎 𝐑26
s . Note that the variances and covariances 

between energy sinks remain unchanged after transformations. That is, 
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where ∆7= ∑ 𝜆"#/& 𝜎7'(
&$
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#(%& , for 𝑥 = 𝑎 and e, respectively.  

 
 



Appendix 2 Heritability and genetic correlation 
 
The heritability for RFI and DMI, respectively, are defined as: 
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The heritability for an energy sink trait takes a similar formula as (9). The genetic correlation 
between RFI and an energy sink is fixed at zero. The genetic correlation between DMI and an 
energy sink trait is not zero, which is computed as follows: 
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Appendix 3 Partial regression coefficients, given fixed and random 
effects 
 
Consider equation (3) in Wu et al. (2021) and replace the structural coefficients, 𝜆"+, by partial 
regression coefficients, 𝑏+, for 𝑗 = 2,… , 𝑘. If we move all the fixed and random effects to the left-
hand side of the equation and keep the energy sinks and the residual on the right-hand side, it 
becomes: 
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Then, the least-square (LS) solutions of the partial regression coefficients are the following:  
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where 𝑤!" = 𝑦!" − 𝜇" − 𝐱′!"𝜷" − 𝒛′!"𝒂". Note that (3) coincides precisely with (13) if we let 𝜏& →
∞ in (3), which is equivalent to assigning flat priors to structural coefficients in (13). In other 



words, the conditional posterior means of structural coefficients agree with (or asymptotically 
equivalent to) the partial regression coefficients in one-step LR, given 𝜇", 𝜷" and 𝜶", if we ignore 
the prior values (or the impact of priors diminishes when the data dominates the posteriors).  

 
 

Appendix 4  A fully-recursive model based on the modified Cholesky 
Decomposition (Lu et al., 2015) 
 
Consider the phenotypic relationships, for example, in the present example. The 𝐿Σ𝐿′ 
decomposition implies fully recursive relationships for the traits (ordered by 𝑦!F , 𝑦!. , 𝑦!&, 𝑎𝑛𝑑 
𝑦!"). Here, L is the unit lower triangular matrix, which corresponds to the structural coefficient 
matrix in RSEM, as follows:  
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where 𝑏++/  is the effect (i.e., partial regression coefficient) from trait j’ to trait j, and 𝑦!+ =
∑ 𝑏++/𝑦!+/
+2"
+/%" , for 𝑗 = 2,… ,4. The covariance matrix between the reparameterized variables (𝑦!F, 

𝑦!. − 𝑏.F𝑦!F , 𝑦!& − ∑ 𝑏"+𝑦!+F
+%. , 𝑎𝑛𝑑  𝑦!" − ∑ 𝑏"+𝑦!+F

+%& ) is diagonal, meaning that they are 
mutually independent. Following the same Bayesian modeling settings to implementing the 
reparameterized MT model as a Bayesian recursive model, we derive the conditional posterior 
means of the structural coefficients as follows: 
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In the above, the equations for 𝑏"&, 𝑏"., 𝑏"F in (15) are identical to those for 𝜆"&, 𝜆"., 𝜆"F in (3), 
suggesting that both models are equivalent for evaluating RFI, assuming phenotypic recursive 
effects. However, they differed in the assumed relationships between energy sinks. For example, 
the model by Lu et al. (2015) assumed recursive effects from milk energy (MILKE) on MBW, but 
the feedback effect from MBW to MILKE did not exist. In contrast, the relationships between 
energy sinks are correlational in a recursive model.  

 
 

Appendix 5  Partial regression coefficients based on a multiple-trait 
model for RFI and energy sinks  
 
Based on the standardized phenotypes, the phenotypic partial regressions are derived as follows, 
which is also in a comparable form with (3):  
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where 𝒄"& is a vector of the phenotypic covariances between DMI and the energy sink traits, and 
	𝑽&& is the phenotypic variance-covariance matrix for the energy sink traits. 
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