Council on Dairy Cattle Breeding Research Updates

Kristen Parker Gaddis, Ph.D., CDCB Research Geneticist

Genomic Nominators & Laboratories Workshop – July 31, 2024

Overview

- Recent implementations
 - Health evaluation updates
 - 305-AA
- Projects in progress
 - Milking speed evaluation
 - Fertility evaluations
 - Herd-level sustainability
 - Mobility & Hoof health
- Long-term projects
 - Lactation factors project
 - Single-step evaluation
 - Enteric methane emissions

STRUCTURE & NEW FACES

Innovation Team

Dr. Javier Burchard - Chief Innovation Officer

Dr. Duane Norman -Technical Advisor

Dr. Malia Caputo – Postdoctoral researcher

Dr. Ashley Ling -Support Scientist

RECENT IMPLEMENTATIONS

Health Traits – April 2024

Dec. 2018 (HO) Dec. 2023 (HO, JE, BS)

305-AA – August 2024

Daily Yields Partial Lactation Yields Yields 305-AA

ME = 61 to 86 months, depending on breed

AA = 36 months across all breeds

305-AA - Estimating New Yield Adjustments

DATA

Lactation Records

Milk: 101.5 million

Fat: 100.5 million

Protein: 81.2 million

UNCHANGED

2X Milking Frequency Previous Days Open

IMPROVED

SEASON-REGION

3 Geographical Regions → 5 Climate Regions
Within Breed → Across Breed

AGE-PARITY

Age Groups → Age in Months

Mature Age → Average Age (36mo)

305-AA - New Climate-Based Regions

305-AA

- Some changes in evaluations, but overall correlations are high
- Yield projections that better reflect the current population and management strategies resulting in more accurate estimates

PROJECTS IN PROGRESS

Milking Speed Evaluations

- Milking Speed Task Force appointed by CDCB Board in November 2021
- Objective: Can we provide a genetic evaluation for milking speed?

Milking Speed - Data Overview

DeLaval	80
GEA	75
Lely	47
Boumatic	46
AfiMilk	45
SCR	13
DairyMaster	10
AIC Waikato	5
AMS Galaxy	3
Jantec	2
Universal	2

6+ Breeds

11 OEMs

31 States

-300 Herds

~250,000 Cows

-320,000 Lactations

-50 Million Observations

Milking Speed - Genetic analyses

- Avg_all average of all milkings in a lactation
- Avg_TD average of milkings on test days
- Avg_all_P1 average of all milkings in first parity
- Avg_TD_P1 average of all test day milkings in first parity

Corre	lation	with	NM\$	<
	10	%		

	Avg_all	Avg_TD	Avg_all_P1	Avg_TD_P1
Avg_all	0.37 (0.02)	0.968	0.916	0.976
Avg_TD	0.821	0.28 (0.02)	0.944	0.991
Avg_all_P1	1.000	0.819	0.38 (0.04)	0.924
Avg_TD_P1	0.820	1.000	0.819	0.21 (0.18)

Heritability – diagonal Genetic correlation – upper Phenotypic correlation – lower

Milking Speed Implementation

- Format 8 Developed and provided to DRPCs to collect individual milk weights and times
- Current development has been for average pounds milk per minute using every milking record within a lactation from 5 to 305 DIM
- Possible inclusion in December 2024 evaluations
- Continued research to investigate relationship to udder health (nonsignificant so far) and using a reduced amount of records

Female fertility evaluations

- Task force assembled in 2024
- Industry feedback: Request was made for a full review of fertility traits by NAAB's Dairy Sire Evaluation Committee
- Also how does the evolution of reproductive technologies impact our evaluations?

Currently Evaluated Female Fertility Traits

Daughter pregnancy rate (DPR)

Cow conception rate (CCR)

Heifer conception rate (HCR)

Early first calving (EFC)

Areas under review:

- Phenotypic data
- Data extraction process
- Data editing
- Genetic models

Herd Sustainability Metrics

- Increased pressure by consumers and retailers regarding the footprint agriculture has on the environment and society
- Desire for quantitative over qualitative measures that directly relate to agriculture
- The International Committee for Animal Recording (ICAR) created a
 Sustainability Task Force to focus on information collected through milk
 recording as it relates to sustainability
 - List of key traits and standardized methods to calculate

Herd Sustainability Metrics – Proof of Concept

Preliminary data from all 4 DRPCs

ICAR SUSTAINABILITY TASK FORCE TRAIT CATEGORIES

FEEDING & PRODUCTION

AVG DIM

N = 10,003

FERTILITY

AVG CALVING INTERVAL

N = 9,905

HEALTH

AVG SCC

N = 9,830

LONGEVITY

AVG CULLING AGE

N = 10,041

YOUNG STOCK

AVG AGE FIRST CALVING

N = 10,095

S < 250 M 250 – 999 L 1000+

Herd Sustainability Metrics - Demographics

		R1			R2			R3			R4			R5	
	S	M	L	S	M	L	S	M	L	S	M	L	S	M	L
AY							7			22			14		
BS				4			30			23	3		33	4	
DL										2					
FL													1	2	
GU	1						7			17	1		26	2	
НО	46	34	19	61	68	206	900	193	55	3248	443	213	1938	629	165
JE	6	2	3	28	18	34	108	18	3	131	18	7	105	15	4
MS				1			1			2			4		
WW													3		
XB							1								
XD						4				1			1		
XX	20	17	14	34	8	24	208	26	11	407	51	18	302	41	11

Herd Sustainability Metrics - Example

Herd Sustainability Metrics - Example

Herd
Sustainability
Metrics –
Expanded
traits

Herd Sustainability Metrics – Next steps

- Proof of concept
- Provide producers with information about their

herd using national data

Develop operational plan

Hoof Health & Mobility

- Addressing hoof health, mobility, and lameness remain a top priority for the dairy industry
- Initiative at CDCB to aggregate high-quality data in development of a genetic evaluation to improve hoof health and mobility

Hoof Health & Mobility – Data Sources

- Mobility scores collected autonomously through
 CattleEye with a score from 1 to 100
- Lesion data collected through collaboration with trained hoof trimmers

Hoof Health & Mobility – Available Data

	Herd 1 (MN)	Herd 2 (IA)	Herd 3 (AZ)	Herd 4 (CA)
Unique cows	1,885	1,435	5,097	2,133
Cow-lactations	2,901	1,931	6,603	2,133
Timespan	2021 to 2024	2021 to 2024	2022 to 2024	2024
Breeds	HO, XX	HO, JE, XX	BS, HO , JE	HO, JE
No. mobility scores	550,709	310,729	1,010,742	86,792
Average mobility score	35.8	36.9	36.0	36.4
Lesion incidence	14.6%	9.4%	8.9%	13.0%

Hoof Health & Mobility – Preliminary results

- Continuing to collect data on these herds & expand to additional herds
- Pursuing opportunities to incorporate additional mobility and lesion data
- Active research on-going for trait definition, genetic evaluation, and economic impact

Trait definition	Heritability		
Mobility score exceeds 50 during lactation (linear)	0.10 (SE = 0.02)		
Mobility score exceeds 50 during lactation (threshold)	0.16 (SE = 0.03)		
Lactational mean mobility score	0.27 (SE = 0.04)		
Log-variance of mobility score throughout lactation	0.06 (SE = 0.02)		
Lesion indicator throughout lactation (threshold)	0.05 (SE = 0.02)		

Mobility, BCS, and yield
Gabriella (Ella) Dodd
Ph.D. student at University of
Guelph

Agustin Chasco
Ph.D. student at University of
Wisconsin - Madison

Phenotypic fertility investigation

Gaurav Dutta Ph.D. student at University of Connecticut

Mobility, BCS, and yield

Gabriella (Ella) Dodd

Ph.D. student at University of

Guelph

Relationship between Daily Milk Yield and 4-Levels of Mobility Score Across DIM Farm B, Lactation 2

Calving ease comparison of dairy sires vs. beef sires

Beef x Dairy

Agustin Chasco
Ph.D. student at University of
Wisconsin - Madison

Proportion Difficulty Score by breed category

Phenotypic fertility investigation

Gaurav Dutta Ph.D. student at University of Connecticut

DPR and CCR records available by year and lactation

LONG-TERM PROJECTS

Lactation Factors Project

 Objective: Collect new data reflective of current US dairy management practices to update the yield and component trait predictions

Lactation Factors Project - Status Update

Lactation Factors Project - Running Sample Totals

- All farms:
 - 199,333 milk samples
 - 8,730 cows
 - > 210 million milk data
 - 327 TMR samples

Lactation Factors Project – Next Steps

- Continue to enroll farms and labs (15 farms in total)
- Continue analyzing factors affecting daily milk yields
- Continue investigating individual cow fatty acid as it relates to production, health, and nutrition
- Create a national database of milk spectral data

Single-step methodology

COUNCIL ON DAIRY CATTLE BREEDING

Rebuilding a significant portion of the evaluation pipeline

Single-step - Details

 UGA software works well, but some modifications and options are necessary

 Model details – sire models, breed-specific traits, threshold model

Single-step – Next steps

- Include MACE proofs
- Testing on a large scale across all trait groups and traits in parallel
- Checking and verifying results

Enteric Methane Emissions

Greener Cattle Initiative

The Greener Cattle Initiative is a consortium of stakeholders who share knowledge, leverage investments and accelerate research to identify, develop and/or validate scientifically sound, commercially feasible and socially responsible practices and technologies that reduce enteric methane emissions from dairy and beef cattle to slow the effects of climate change.

Enteric Methane Emissions - Goals

measure CH₄ production, feed intake, milk energy, body weight, and milk spectra for 6-8 weeks in mid-lactation selective breeding

develop genomic evaluations for methane emission traits

milk spectrometry

evaluate the use of milk spectra to predict CH₄ emissions

microbiome

reveal the composition/activity of the rumen microbiome of cows with low & high CH₄ emissions

using metagenomics and metabolomics

exchange ruminal contents of low and high methane-emitting cows

decipher the relative contributions of hosts and microbes to CH₄ production

GCI – Selective Breeding

- Recent studies have shown that methane traits are heritable
- Data collection has started on commercial farms in addition to research sites
- Genomics facilitates selection for traits like methane emissions through the phenotyping of a select group of genotyped cows (creating a reference population)

Research Partners

Francisco Peñagaricano, quantitative genomics Hilario C Mantovani, rumen microbiology Heather M White, nutritional physiology Kent A Weigel, breeding & genetics

Michael J VandeHaar, sustainable food systems Robert J Tempelman, statistical genetics

James E Koltes, genomics & bioinformatics Ranga Appuhamy, nutrition/sustainable agriculture

José EP Santos, nutrition, health & fertility Kwang C Jeong, microbiology & food safety

Ransom L Baldwin, nutritional genomics
Paul M VanRaden, sustainable breeding goals
Asha Miles, genomics & microbiology
Elizabeth A French, precision feeding
Kenneth F Kalscheur, sustainable production

Enteric Methane Emissions – variability

Enteric Methane Emissions – Preliminary Results

Findings suggest that CH_4 traits have considerable variability, moderate heritability, and favorable correlations with feed efficiency

Trait definitions:

Residual methane intensity (RMI) – methane production regressed on NEL and MBW

 $h^2 = 0.35 \pm 0.15$

Residual methane yield (RMY) - methane production regressed on DMI

 $h^2 = 0.18 \pm 0.15$

Final remarks

- CDCB research initiatives and collaborations are growing
- Many short- and long-term projects are underway to improve and enhance CDCB services to the industry

COUNCIL ON DAIRY CATTLE BREEDING

Recent & On-going CDCB Research

- Health trait evaluation updates
- 305-AA
- Milking speed evaluations
- Fertility evaluation investigation
- Hoof health & mobility
- Herd sustainability metrics
- Beef x dairy impacts
- Lactation factors
- Single step methodology
- Enteric methane emissions
- Heat stress
- Inbreeding & genetic diversity

ACKNOWLEDGMENTS

U.S. dairy producers

Member sectors and collaborators

USDA AGIL

CDCB staff

THANK YOU FOR YOUR ATTENTION

www.uscdcb.com

kristen.gaddis@uscdcb.com

